KU LEUVEN

Optimization and Evaluation of a Language-Independent Hearing Screening Test based on Sound-Perception-in-Noise

<u>Sam Denys</u>*, Jan De Laat**, Wouter Dreschler***, Marya Sheikh Rashid***, Michael Hofmann* & Jan Wouters*

*KU Leuven, ExpORL **Leiden University Medical Centre ***Amsterdam Medical Centre

Study Phases

- Selection of sounds
- Optimization wave 1
- Development and evaluation of adaptive procedure + test validation
- Optimization wave 2
- Optimization wave 3
- Tablet implementation

Future steps:

- Optimization and evaluation of adaptive procedure
 - Investigate sensitivity & specificity of test to detect HI
- Feasibility in children (6 yrs)

Selection of sounds

- Spectro-temporal analysis of sounds and factor analysis (31 sounds)
 - Selection of sounds that resemble speech (BOC-words)
 - Low-pass filtering of sounds to enhance resemblence, provided that it remains recognizable
- 9 sounds selected:
 - Baby*
 - Claxon*
 - o Dog
 - Cat
 - o Piano
 - Telephone*
 - Church bell*
 - Trumpet*
 - o Bird

*filtered

KU LEUVEN

Acknowledgement: Laura Sels (AMC internship)

- Goal: perceptual homogenization of sound material
- Method:
 - <u>Participants</u>: N = 10 (AMC) + 10 (Leuven) NH adults
 - Thresholds $500 4000 \text{ Hz} \le 20 \text{ dB HL}$
 - <u>Materials</u>: laptop connected to external soundcard (FireFace UC) -HDA200 Headphones (Sennheiser) – stimuli played via APEX 3.1 software* - quiet room or sound-proof booth
 - <u>Procedure</u>: each sound was randomly presented 6x at different fixed SNRs: 0, -5, -8, -10, -12, -14, -16 and -18 dB SNR (noise at 65 dB SPL) – monaurally
 - <u>Analysis</u>: PI-curves were fitted, averaged across participants
- AMC evaluated filtered set, KU Leuven evaluated unfiltered set

- Little differences between both sets: we use **unfiltered** test
- Token-specific level adjustments were done (shift to mean)
 - Adjustments varied between -1.9 to 1.5 dB

Evaluation of Adaptive Procedure

Participants

- \circ N = 44 NH (thresholds 500 − 4000 Hz ≤ 20 dB HL) + 8 HI
- 39 ± 16 years (age range: 20-68)

• Procedure

- Pure tone audiometry \rightarrow PTA_{500-4000 Hz}
- SEC training (monaurally)
 - Each sound was randomly presented 3x at 0 dB SNR with feedback (right or wrong)
- SEC test-retest (monaurally) → SRT
 - Each sound was randomly presented 3x
 - Level of sounds varied adaptively in 2 dB steps (noise level = 65 dB SPL)
 - Start-SNR = -17 dB, repeat first until correct
- Digit Triplet Test (KU Leuven) or DIN Test (AMC) (monaurally) \rightarrow SRT

KU LEUVEN

Prototype adaptive SPIN screening test using digits-in-noise

Evaluation of Adaptive Procedure

Test Validation

KU LEUVEN

• Significant correlations with PTA and DTT SRT

- Based on the adaptive tracks, PI curves per sound were fitted
- Despite previous homogeneization, still huge variability in SRTs!
 - Level adjustments were done (-1.3 to 2 dB)
- Many piano-trumpet confusions
 - Trumpet removed from set

Data shown: young (<40 yrs) NH participants, N = 29 Test-retest data are pooled

- **Goal**: FINAL perceptual homogenization of sound material
- Method:
 - <u>Participants</u>: N = 10 NH adults
 - Thresholds $500 4000 \text{ Hz} \le 20 \text{ dB HL}$
 - <u>Materials</u>: laptop connected to external soundcard (FireFace UC) -HDA200 Headphones (Sennheiser) – stimuli played via APEX 3.1 software* - quiet room or sound-proof booth
 - <u>Procedure</u>: after training experiment, each sound was randomly presented 12x at different fixed SNRs: -9, -11, -13, -15, -17 dB SNR (noise at 65 dB SPL) – monaurally
 - <u>Analysis</u>: PI-curves were fitted, averaged across participants

- Little variability in SRT (homogeneous set)
- Steep slope!
- Final adjustments were done (-0.5 to 0.5 dB)

Tablet Implementation

DTT NL & FR

Questions?

Contact information: sam.denys@kuleuven.be

Online hearing test: m.testjegehoor.be

